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The paper presents theoretical basis for the analogy between the pulsating and vibrating flows 
enabling a common rheodynamic theory to be formulated for both types of the flow. 

Numerous recent papers have been dealing with the study of the effect of oscillating 
shear on time-averaged characteristics of axial flows in c!osedl- 7 and openS-lO 
ducts. Shearing oscillations may be generated either by pulsations of the pressure 
gradient (pulsating flows) or vibrations of the walls (vibrating flows). Pulsating and 
vibrating flows have been studied thus far, with the only exception 7 , separately without 
attempt for confrontation. It will be shown that in case of an incompressible fluid 
an analogy exists between both types of these flows enabling formulation of a common 
dynamic theory. 

Noninertial Frame of Reference 

In an inertial frame of reference for the steady axial flows in question the cartesian 
coordinates (x, y, z) are taken so as to have the outline of the duct in an arbitrary 
plane z = const. represented by a curve r wE (x, y). For simplicity we shall confine 
ourselves to axial flows with such a degree of symmetry that we may write 

vx = Vy = 0, Vz = v(t;x, y), (1 a,b,c) 

(2) 

Under these simplifying assumptions the equation of motion may be reduced to 

(3) 

The deformation stress 't' is given by the appropriate constitutive functional of the de
formation stress history 

't' = T[D(s)]'.. OJ , (4) 
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where 
(5) 

Apart from the initial and symmetry conditions, the mathematical formulation of the 
problem comprizes inhomogeneous boundary conditions on the wall of the duct 

Vz = u(t); (x, y) E r w , (6) 

where u(t) stands for the axial velocity of the duct walls with respect to the inertial 
frame of reference. 

Let us consider now the transformation properties of the set (3)-(6) undergoing 
the following transformation 

z ~ z' = z + L(t) 

v ~ v' = v + L(t) 

G(t) ~ G'(t) = G(t) + L(t). 

(7a) 

(7b) 

(7c) 

L(t) is a parameter of this transformation which represents only a special case of the 
Newtonian-Galilei transformation 11,12. The relationships between the parameters 
t, x, y, vx , Vy in the original and the transformed system are identities, i.e. t = t', etc. 
Clearly, the objective quantities 0 and .. are invariant with respect to the transforma
tions (7a,b,c). As a special case, 0' = 0 in view of o,v = 0xv', OyV = OyV'. With 
respect to these transformations, the following equation of motion appears also_ 
invariant: 

(9) 

The transformations (7a,b,c) shall influence only the structure of the boundary 
conditions on the wall of the duct 

v' = u' = u(t) + L(t); (x, y) E r w • (10) 

The described transformation may be comprehended physically as a transition 
from the inertial frame of reference to a new one, moving with respect to the original 
frame in the axial direction at the velocity L(t), i.e. with an acceleration L(t). This 
acceleration shall become manifest through the · fictious body forces in accord with 
Eq. (7c). The flow situations satisfying the following identities, G'(t) = idem, u'(t) = 

,,;, idem, under suitable transformations L(t) represent the class of equivalent motions. 

PeriOdic Axial Flows 

Consider the case where in an inertial frame of reference there acts, aside from the 
constant mass acceleration Go = const., an oscillatory component G I = GI(t) and 
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the axial velocity of the walls of the duct may be also split into a steady and a peri
odic component of equal period 0: 

G(t) = Go + G1(1) , U = UO(I) + U1(l) 

G1(1 + 0) = G1(1), UI(t + 0) = UI(t) 

J:G1dl=O, J:U1dt=O. 

(IOa,b) 

(lla ,b) 

(12a,b) 

In order that we may study all periodic axial flows generally, we shall select that 
canonic frame of reference for which we may write 

G' = const. 

U~ = O. 

(I3a) 

(13b) 

In this frame of reference, all acting external effects formally decompose in such 
a manner that the liquid is under the effect of only time-independent fictious body 
force or pressure gradient and the walls of the duct oscillate with respect to the frame 
of reference about a mean position. Corresponding canonic transformation L(t) 
may be always found: From Eq. (7) through (13) we have 

(14) 

G' = G~ = Go (I5a) 

u' = u~ = ul(t) + 0- 1 (f:G1(S) S ds + tG1(s) 0 dS). (I5b) 

The relationships (14) and (I5) represent basic results we have been aiming for. 
If G~(t) = idem, u'(t) = idem, we have for a given material and geometry of the duct 
also v~ = v'(t, x, y) = idem. 

Example. Consider the laminar flow of a viscoelastic fluid in a horizontal (gz = 0) flat duct 
with walls at x = ±h under two following situations: 

Case A. The pressure gradient is steady and the walls of the duct oscillate harmonically in the 
axial direction: 

_(l-l 8zp = Go 

v = aw cos (wt) for x = ±h (1 6a.,b) 

Case B. The walls of the duct are immobile and the pressure gradient oscillates harmonically 
about the mean Go: 
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v = 0 for x = ±h 
_(2 - 1 8z p = Go + Gc sin (wt). (17a,b) 

The velocity field in both cases considered possesses a high degree of symmetry: Vx = 0, Vy = 0, 
Vz = v(x). The non-zero component of the rate-of-strain tensor in the system (x, y, z) is clearly 
y(t,x) = i\ v: 

(18) 

Assuming that the anisotropic normal stresses are balanced by the appropriate reactions of the 
walls, the equation of motion reduces to the scalar form (3) with 'yz = O. 

For the description of the dynamics of the flow we shall introduce a new (primed) frame of refe
rence differing from the original one only in the definition of y. 

{
z ; case A 

z' = z + Pcw- z sin (wt); case B . 

(19a) 

(19b) 

In these new coordinates the equation of motion assumes a new form (according to the Galilei 
principle of relativity) where instead of gz = 0 we have 

{
O; case A 

g~ = . ( ) o - Pc SIn wt ; case B . 

Putting 

{
a; case A 

a' = 
Pcw- z ; case B 

(20) 

(2fd")' -

(21 b) 

the model of the flow in the coordinates (x', y', z', t'» takes a common form for both cases 
considered 

LIST OF SYMBOLS 

(2(a;v' - Go) = 8~r~x 

v' = a'w cos (wt) , x' = ±h 

v'(x', t' + 21t/w) = v' (x', t') . 

D rate-of-strain tensor 
gO(. axial acceleration in an inertial frame of reference 
G(t) potential of effective driving forces for the axial flow, Eq. (2) 
L(t) mutual axial displacement between the inertial and a new frame of reference 
p isotropic pressure 
s,t time 
T rheological constitutive operator 

axial velocity of fluid on wall, velocity of wall 

(22a) 

(22b) 

(22c) 
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t-'x , Vy ' Vz 

x, y, z 

OX' Oy , at 

axial velocity 
cartesian velocity components 
cartesian coordinates 
operators of appropriate partial derivatives 
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